Статьи порошковая металлургия. Изделия порошковой металлургии

Это огромная уже сегодня и стремительно развивающаяся область металлургии.

Правда, в настоящее время всего лишь около 0,1 процента – тысячная часть от мирового производства металла – проходит стадию порошковой металлургии, но это еще не характеризует ее места в промышленности. Ведь каждый килограмм изделий методами порошковой металлургии эквивалентен нескольким килограммам металлических изделий, изготовленных резанием: в порошковой металлургии почти нет отходов, а при резании огромное количество металла идет в стружку. С другой стороны, один килограмм металлокерамических твердых сплавов, получаемых методом порошковой металлургии, заменяет десятки килограммов высоколегированной инструментальной стали.

Порошковая металлургия применяется в тех случаях, когда никакими другими способами нельзя приготовить из соответствующих материалов изделие с требующимися высокими свойствами.

Как, например, изготовить из сверхтвердого вольфрама, да к тому же еще имеющего температуру плавления в 3400 градусов, тончайший волосок электрической лампочки? Ни обработки резанием, ни волочения, ни прокатки здесь не применишь.

Как приготовить сплав двух металлов, имеющих резко различные температуры плавления – например меди (она плавится при 1083 градусах) и того же вольфрама?

Как изготовить материал, содержащий наряду с металлическими и неметаллические включения, например частицы корунда или алмазной пыли?

Как изготовить металлический вкладыш подшипника таким, чтобы всю его толщу пронизывали поры и чтобы общее количество их было (в процентном отношении) строго соответствующим заданному?

Из каких сплавов будут созданы они, межзвездные корабли послезавтрашнего дня?!

Все эти технологические задачи позволяет решить порошковая металлургия. Но это еще не все. Порошковая металлургия может конкурировать по экономичности и с другими видами обработки металлов. Так, для изготовления обычным методом железной шестерни требуется затратить 30 часов труда квалифицированного рабочего. На изготовление такой шестерни методом порошковой металлургии требуется 10 часов труда малоквалифицированного труженика.

Методом порошковой металлургии можно получать изделия, столь точно выполненные, что они не потребуют никакой дополнительной обработки. Потери металла при порошковой металлургии крайне невелики, а чистота получаемых материалов может быть очень высокой.

Не надо, однако, считать, что порошковая металлургия способна заменить собой все другие виды обработки металлов. И у нее есть целый ряд существенных недостатков. Изготовленные этим методом изделия вследствие большой пористости обладают повышенной способностью к окислению, тем более что оно может происходить по всей толще металла. Они обладают низкими пластическими свойствами. Дорого стоят и пресс‑формы, в которых прессуются из металлического порошка изделия, поэтому порошковая металлургия рентабельна только в массовом производстве. Ограничены пока размеры и форма получаемых изделий.

Но самым главным недостатком порошковой металлургии является высокая стоимость порошков металлов – исходного сырья для изготовления изделий этим методом.

Много способов предложили, испробовали и применяют инженеры для получения металлических порошков требующейся тонины разлома.

Самый простой и распространенный – это размол в шаровых мельницах. Удары чугунных шаров дробят хрупкий металл, дуновение льющегося сквозь барабан мельницы воздуха уносит с собой наиболее мелкие частицы, сепаратор отделяет только те из них, которые достигли требующихся размеров, и возвращает более крупные на домол в мельницу. Во всяком случае в настоящее время инженеры знают целый ряд способов получения порошков из разнообразнейших материалов, разнообразнейшей тонины помола, с разнообразной формой частиц. Ибо и форма частиц играет роль в порошковой металлургии.

Но это отнюдь не значит, что найдены все самые лучшие и выгодные способы. Наоборот, по всей вероятности, самые лучшие и экономичные ждут своих открывателей.

Но вот требующиеся порошки получены. Их смешивают. Это тоже сложный процесс: ведь от равномерности смеси в значительной степени зависит качество будущего изделия. Затем смесь закладывают в форму и прессуют.

Возьмите в руки кусок металла. Это сплошное тело, в котором любая частица плотно соприкасается со всеми окружающими частицами. Существуют в технике вещества и другого состояния – так называемые коллоиды. Они представляют собой крохотные частицы величиной в сотые и тысячные доли микрона, взвешенные в какой‑либо жидкости. Частицы коллоида совсем не касаются друг друга. Порошки металлов представляют собой нечто среднее между этими двумя крайними состояниями вещества, расквалифицированного по сцепляемости, соприкасаемости частиц, ибо из общей их поверхности лишь незначительная часть находится в состоянии соприкосновения друг с другом.

Но эти участки контакта являются важнейшими в физической картине порошковой металлургии. Именно через эти участки проходит основной поток тепловой и электрической энергии, они испытывают максимальные напряжения при прессовании, в них проходит процесс спекания частиц в один сплошной монолит.

В процессе прессования частицы сближаются друг с другом, поверхность соприкосновения частиц растет, они переплетаются друг с другом своими выступами и неровностями. Но, конечно, из‑под холодного пресса выходит еще не готовое изделие. Прессование обеспечило только получение формы будущего изделия для его дальнейшей обработки. А она заключается в спекании.

Спекание производится при более низкой температуре, чем температура плавления главного компонента порошковой смеси, однако оно вызывает целый ряд существенных изменений физического состояния прессованного изделия. В смеси происходят сложные процессы диффузии атомов, сцепления частиц друг с другом, взаимного растворения веществ. В результате после охлаждения получается готовое изделие, обладающее заданными свойствами.

Конечно, это только общая технологическая линия производства изделий методом порошковой металлургии. В каждом конкретном случае, для каждой группы материалов существуют свои варианты этой технологии. Нередко прессование осуществляют одновременно с нагревом. Случается, что спекание приходится осуществлять в атмосфере инертных газов. Бывает, что прессование осуществляется всесторонним давлением сжатой жидкости, а не односторонним нажимом пуансона пресса. Можно встретить установки, в которых осуществляется и не прессование, а прокатка порошков. И так далее и так далее.

Мы, конечно, не исчерпали всех применений порошковой металлургии!

Порошковая металлургия тесно связана с электротехникой. Нити накала электрических ламп, радиоламп, рентгеновских трубок должны работать при температуре 2–3 тысячи градусов и иметь достаточную механическую прочность. Из вольфрама, молибдена и тантала методом порошковой металлургии и готовят эти детали.

Металлокерамические резцы, появившиеся в последние годы, произвели подлинную революцию в обработке металлов резанием. Еще бы, они позволили увеличить скорость резания в десятки раз! Проникнув в горное дело, они и там позволили значительно ускорить проходку скважин. А ведь в их состав входят карбиды – соединения с углеродом самых тугоплавких металлов. Так, карбид титана, обычный компонент таких резцов, плавится при температуре лишь в 3140 градусов, карбиды циркония и ниобия – при 3500 градусах, карбид тантала – при 3380 градусах. Конечно, только порошковая металлургия позволяет получить узкие, наплавляемые на державки резцов пластинки, в состав которых входят эти карбиды.

Твердые сплавы, изготовленные из порошков карбидов, позволили повысить скорость не только обработки металлов резанием. Из них делают штампы для прессов и фильеры для волочения стальной проволоки, сверла и резьбовые калибры и т. д.

И во всех этих случаях твердые сплавы с честью выдерживают испытание. Металлокерамический штамп для производства безопасных бритв выдерживает до 2 млрд. штамповок, когда обычный стальной штамп приходится менять после 15 млн. штамповок. Срок службы твердосплавных валков в 100 раз дольше, чем простых стальных. Стальная фильера до износа позволяет проволочить сквозь себя 80 кг железной проволоки, твердосплавная – до 50 тонн, в 600 раз больше!

Вот что такое твердые сплавы, изготовляемые методом порошковой металлургии. Материалом высоких скоростей можно было бы назвать их, ибо их применение очень часто связано с большими скоростями. А рост скоростей – одна из отличительнейших характерных черт сегодняшней техники.

Взять хотя бы двигатель современной скоростной авиации – реактивный двигатель. Его приход сразу позволил чуть ли не вдвое увеличить скорость полета самолета. Он позволил поднять и потолок самолета в те области атмосферы, где задыхался поршневой двигатель. А знаете ли вы, что реактивный двигатель не может развить и сейчас еще полной возможной мощности? Что в камеры сгорания его впускается больше, чем нужно, воздуха, а то и вбрызгивается вода, чтобы понизить температуру газов горения, хотя чем выше она, тем экономичнее работа двигателя? И делается это потому, что нет материалов, которые смогли бы продолжительное время работать в яростном потоке этих газов, имеющих температуру выше полутора‑двух тысяч градусов.

Да, современные литые металлические сплавы, включающие в себя добавки хрома, никеля, кобальта (мы говорили о них), не могут работать при температуре выше 850–900 градусов. При более высоких температурах следует применять тугоплавкие металлы, карбиды и нитриды их. И, конечно же, именно порошковая металлургия позволяет изготовить из них нужные детали аппаратуры.

Одним из наиболее перспективных таких материалов является карбид титана. Он хорошо противостоит тепловому удару – быстрому нагреву при пуске двигателя и быстрому охлаждению при его остановке. С добавкой 20 процентов кобальта при температуре около 900 градусов он почти вдвое превосходит по прочности лучшие жаропрочные металлические сплавы.

А сопло реактивного двигателя… Расширяющаяся труба, в которой раскаленные газы, все ускоряя свое движение, создают реактивную силу. Какие только усилия не прилагают конструкторы, чтобы понизить ее температуру! Ее охлаждают поступающим в камеру сгорания топливом, делают пористой и прокачивают сквозь эти поры часть топлива. Испаряясь на внутренней поверхности трубы, топливо охлаждает ее и создает у поверхности прослойку холодного газа.

Надо ли добавлять, что и такие пористые, способные «потеть» в жару трубы тоже можно изготовить только методом порошковой металлургии?

Этим же методом изготавливают удивительные пористые самосмазывающиеся подшипники. Поры в них заполняют маслом. Едва подшипник нагревается, масло, расширяясь, начинает выходить из пор и создавать смазывающую прослойку. При остывании масло впитывается назад, как вода в губку.

Методом порошковой металлургии готовят тончайшие фильтры и фрикционные накладки муфт сцепления, шестерни и кулачки, шайбы и сердечники электромагнитов, щетки динамомашин и электрические контакты точных приборов и так далее и так далее, ибо уже сегодня нельзя перечислить все, что делается этим методом, а завтра этот список удвоится и утроится…

Вот методами порошковой металлургии и можно изготовлять из блистательного бериллия, как и из многих других металлов, детали машин, аппаратов, приборов.

Как известно, пирамиды, в которых древние египтяне хоронили своих фараонов, были разграблены еще в древности. Были разграблены и скальные погребения египетских царей. И только случайно дошло до нашего времени потерянное еще в древности захоронение фараона Тутанхамона, жившего в XIV в. до н. э.

Много интересного нашли в его гробнице историки, когда в 1922 году впервые спустились по извилистым ходам, пробитым в скале, в посмертное жилище фараона. Видимо, Тутанхамон отличался особенной любовью к произведениям искусства – гробница была прямо нафарширована ими. И среди них были обнаружены кинжалы, украшенные порошковым золотом.

Вот, оказывается, где истоки порошковой металлургии!

Впрочем, не одни египтяне, а и древние обитатели Америки – инки умели получать изделия спеканием порошков драгоценных металлов. Но на многие столетия было забыто древнее искусство. Развитие металлургии пошло по другому пути.

Только в начале XIX века, когда впервые встал вопрос о методе изготовления предметов из тугоплавких металлов, вновь ненадолго воскресло забытое мастерство. Воскресил его выдающийся русский металлург Петр Григорьевич Соболевский.

Он применил метод порошковой металлургии для изготовления монет и медалей из платины. Расплавить ее было в те годы практически невозможно: ведь для этого нужна температура в 1773 градуса. Соболевский закладывал в форму очищенную губчатую платину, полученную химической обработкой природных минералов, подвергал ее прессованию, затем нагреванию и еще раз прессованию. Получились плотные металлические изделия. Это было в 1826 году.

Несколько десятков лет пользовались и у нас в стране и за рубежом методом русского металлурга. Затем платину научились плавить. И снова на много десятилетий умерла порошковая металлургия.

Она возродилась на рубеже XX века и теперь уже не сдаст завоеванных позиций. Даже наоборот: она будет захватывать все новые области применения.

Порошковая металлургия – область техники, охватывающая совокупность методов изготовления порошков металлов и металлоподобных соединений, полуфабрикатов и изделий из них (или их смесей с неметаллическими порошками) без расплавления основного компонента.

Технология порошковой металлургии включает следующие операции:

  • получение исходных металлических порошков и приготовление из них шихты (смеси) с заданными химическим составом и технологическими характеристиками;
  • формование порошков или их смесей в заготовки с заданными формой и размерами (главным образом прессованием);
  • спекание, т. е. термическую обработку заготовок при температуре ниже точки плавления всего металла или основной его части.

После спекания изделия обычно имеют некоторую пористость (от нескольких процентов до 30-40%, а в отдельных случаях до 60%). С целью уменьшения пористости (или даже полного устранения её), повышения механических свойств и доводки до точных размеров применяется дополнительная обработка давлением (холодная или горячая) спечённых изделий; иногда применяют также дополнительную термическую, термохимическую или термомеханическую обработку.

В некоторых вариантах технологии порошковой металлургии отпадает операция формования: спекают порошки, засыпанные в соответствующие формы.

Этапы технологии порошковой металлургии

1. Получение порошков

– Механическое измельчение металлов в вихревых, вибрационных и шаровых мельницах (получение крупных (100 и более мкм) порошков неправильной формы);
– распыление жидких металлов в воздух, либо в воду: его достоинства - возможность эффективной очистки расплава от многих примесей, высокая производительность;
– получение порошков железа, меди, вольфрама, молибдена высокотемпературным восстановлением металла (обычно из окислов) углеродом или водородом;
– электролитическое осаждение металлов;
– термическая диссоциация летучих карбонилов металлов (карбонильный метод). Преимущества- получение мелкодисперсного (0-20 мкм) порошка железа правильной формы, с определёнными радиотехническими свойствами.

2. Формование порошков

Основной метод формования металлических порошков - прессование в пресс-формах из закалённой стали под давлением 200-1000 Мн/м2 на быстроходных автоматических прессах. Прессовки имеют форму, размеры и плотность, заданные с учётом изменения этих характеристик при спекании и последующих операциях. Возрастает значение таких новых методов холодного формования, как изостатическое прессование порошков под всесторонним давлением, прокатка и МIМ-технология.

3. Спекание порошков

Спекание проводят в защитной среде (водород; атмосфера, содержащая соединения углерода; вакуум; защитные засыпки) при температуре около 70-85% от абсолютной точки плавления, а для многокомпонентных сплавов - несколько выше температуры плавления наиболее легкоплавкого компонента. Защитная среда должна обеспечивать восстановление окислов, не допускать образования нежелательных загрязнений продукции, предотвращать выгорание отдельных компонентов (например, углерода в твёрдых сплавах), обеспечивать безопасность процесса спекания. Конструкция печей для спекания должна предусматривать проведение не только нагрева, но и охлаждения продукции в защитной среде. Цель спекания - получение готовых изделий с заданными плотностью, размерами и свойствами или полупродуктов с характеристиками, необходимыми для последующей обработки. Расширяется применение горячего прессования (спекания под давлением), в частности изостатического.

Преимущества порошковой металлургии

1. Возможность получения таких материалов, которые трудно или невозможно получать другими методами. К ним относятся:

– некоторые тугоплавкие металлы (вольфрам, тантал);

– сплавы и композиции на основе тугоплавких соединений (твёрдые сплавы на основе карбидов вольфрама, титана и др.): композиции и так называемые псевдосплавы металлов, не смешивающихся в расплавленном виде, в особенности при значительной разнице в температурах плавления (например, вольфрам - медь);

– композиции из металлов и неметаллов (медь - графит, железо - пластмасса, алюминий - окись алюминия и т.д.);

– пористые материалы (для подшипников, фильтров, уплотнений, теплообменников) и др.

2. Возможность получения некоторых материалов и изделий с более высокими технико-экономическими показателями. Порошковая металлургия позволяет экономить металл и значительно снижать себестоимость продукции (например, при изготовлении деталей литьём и обработкой резанием иногда до 60-80% металла теряется в литники, идёт в стружку и т.п.).

3. При использовании чистых исходных порошков (например, карбонильный метод) можно получить спечённые материалы с меньшим содержанием примесей и с более точным соответствием заданному составу, чем у обычных литых сплавов.

4. При одинаковом составе и плотности у спечённых материалов в связи с особенностью их структуры в ряде случаев свойства выше, чем у плавленых, в частности меньше сказывается неблагоприятное влияние предпочтительной ориентировки (текстуры), которая встречается у ряда литых металлов (например, бериллия) вследствие специфических условий затвердевания расплава. Большой недостаток некоторых литых сплавов (например, быстрорежущих сталей и некоторых жаропрочных сталей) - резкая неоднородность локального состава, вызванная ликвацией (процесса разделения первоначально однородного расплава при понижении температуры на две разные по составу несмешивающиеся жидкости) при затвердевании.

5. Размеры и форму структурных элементов спечённых материалов легче регулировать, и главное, можно получать такие типы взаимного расположения и формы зёрен, которые недостижимы для плавленого металла. Благодаря этим структурным особенностям спечённые металлы более термостойки, лучше переносят воздействие циклических колебаний температуры и напряжений, а также ядерного облучения, что очень важно для материалов новой техники.

Недостатки порошковой металлургии

  • cравнительно высокая стоимость металлических порошков;
  • необходимость спекания в защитной атмосфере, что также увеличивает себестоимость изделий порошковой металлургии;
  • трудность изготовления в некоторых случаях изделий и заготовок больших размеров;
  • сложность получения металлов и сплавов в компактном беспористом состоянии;
  • необходимость применения чистых исходных порошков для получения чистых металлов.

Недостатки порошковой металлургии и некоторые её достоинства нельзя рассматривать как постоянно действующие факторы: в значительной степени они зависят от состояния и развития как самой порошковой металлургии, так и других отраслей промышленности. По мере развития техники порошковая металлургия может вытесняться из одних областей и, наоборот, завоёвывать другие.

Порошковая металлургия включает следующие основные группы технологических операций: получение исходных металлических порошков и приготовление из них шихты (смеси); компактирование порошков (или их смесей) в заготовки; спекание.

Получение. Порошки, используемые в порошковой металлургии, состоят из частиц размером 0,01-500 мкм. Получают порошки металлов (или их соединений) механическими и физико-химическими методами. К механическим методам относят измельчение твердых металлов или их соед. идиспергирование жидких металлов или сплавов. Твердые тела измельчают в мельницах с мелющими телами (барабанные вращающиеся, вибрационные, планетарные мельницы), ударного действия (вихревые, струйные, центробежные) и с вращающимися частями (аттриторы, дисковые, кавитационные, молотковые, роторные). При измельчении в мельницах хрупких материалов частицы порошка имеют осколочную форму, при измельчении пластичных материалов-чешуйчатую. Измельченные порошки характеризуются наклепом (изменением структуры и свойств, вызванным пластической деформацией) и, как правило, подвергаются отжигу.

Диспергирование, или распыление, жидких металлов и сплавов осуществляют струей жидкости или газа. При распылении водой под высоким давлением используют форсунки разных форм. Свойства распыленных порошков зависят от поверхностного натяжения расплава, скорости распыления, геометрии форсунок и других факторов. Распыление водой часто проводят в среде азота или аргона . Распылением водой получают порошки железа, нержавеющих сталей, чугунов, никелевых и др. сплавов. При распылении струи расплава газом высокого давления на размер частиц влияют давление газа, диаметр струи металла, конструкция форсунки, природа сплава. В качестве распыляющего газа используют воздух . азот, аргон, водяной пар . Распыление металла осуществляют также плазменным методом или путем разбрызгивания струи металла в воду. Такими способами получают порошки бронз, латуней, олова, серебра, алюминия и др. металлов и сплавов.

Физико-химические методы получения металлических порошков включают: восстановление оксидов металлов углеродом . водородом или углеводородсодержащими газами; металло-термические способы - восстановление оксидов, галогенидов или других соединений металлов др. металлами; разложение карбонилов металлов, металлоорганических соединений; электролиз водных растворов и расплавов солей. Порошки металлоподобных соединений получают теми же методами и, кроме того, синтезом из простых веществ.

Путем восстановления оксидов металлов производят порошки Fe, Co, Ni, W, Mo, Cu, Nb и других металлов. Частицы порошков имеют развитую поверхность. Разложением карбонилов металлов получают порошки Ni, Fe, W, Mo со сферической формой частиц. Электролиз водных растворов солей металлов применяют для приготовления порошков Fe, Cu, Ni, а электролиз расплавов солей - для получения порошков Ti, Zr, Nb, Та, Fe, U. В обоих случаях частицыпорошков имеют дендритную форму.

Компактирование. Цель компактирования порошков - получение полуфабрикатов (прутки, трубы, ленты) либо отдельных заготовок, по форме приближающихся к конечным изделиям. Во всех случаях после компактирования порошок из сыпучего тела превращается в пористый компактный материал, обладающий достаточной прочностью для сохранения приданной ему формы при последующих операциях.

Основные виды компактирования - одно- и двустороннее прессование в жестких металлических матрицах, прокатка, изостатическое прессование жидкостью или газом, мундштучное прессование, шликерное литье, высокоскоростное прессование, в т. ч. взрывное, инжекционное формование. Компактирование может осуществляться при комнатной температуре (холодное прессование, прокатка) и при высоких температурах (горячее прессование, экструзия, прокатка).

Уплотнение порошка при прессовании происходит в результате движения частиц друг относительно друга, их послед. деформации или разрушения. При относительно больших давлениях порошки пластичных металлов уплотняются в основном благодаря пластической деформации, порошки хрупких металлов и их соединений - в результате разрушения и измельчения частиц. Спрессованные заготовки из порошков пластичных металлов гораздо более прочны, чем из хрупких. Для увеличения прочности последних в порошок перед прессованием вводят жидкое связующее.

Б. ч. порошков, особенно при производстве массовых изделий простой формы, прессуется в жестких металлических матрицах (прессформах) с использованием таблетировочных, ротационных и других механических и гидравлических прессов-автоматов. После заполнения матрицы порошок прессуется под давлением одного или нескольких пуансонов.

Прессование прокаткой - это непрерывное формование заготовок из порошков при помощи валков на прокатных станах. Подача порошка в валки может осуществляться под действием силы тяжести или принудительно. В результате прокатки получают пористые листы, ленты, профили.

При изостатическом прессовании порошок или пористые заготовки помещают в оболочку и подвергают всестороннему обжатию. Процесс включает заполнение оболочки, ее вакуумирование и заделку, собственно изостатическое прессование и декомпрессию оболочки. Разновидности изостатического прессования - гидро- и газостатическое прессование, рабочими средами (передающими давление) в которых служат соотв. жидкости или газы. Гидростатическое прессование производят, как правило, при комнатной температуре; газостатическое - при высоких температурах. С помощью изостатического прессования получают изделия сложной формы с максимально равномерной плотностью по всему объему.

Формование заготовок из смесей порошка с пластификатором путем продавливания их через отверстие в мундштуке или фильеру наз. мундштучным прессованием. Оно позволяет получать длинные заготовки с равномерной плотностью из труднопрессуемых порошков хрупких металлов и соединений. Пластификатор обеспечивает достаточную вязкость смеси и прочность заготовки.

Шликерное литье формование изделий из шликеров, представляющих собой однородные концентрир. суспензии порошков, обладающие высокими агрегативной и седиментационной устойчивостью, хорошей текучестью. Основные разновидности шликерного литья - литье в пористые формы, литье из термопластичных шликеров (горячее литье) и формование электрофоретическим методом. При литье в пористые формы поток всасывающейся в поры жидкости увлекает за собой частицы порошка, которые оседают на стенках пор формы. Термопластичный шликер при обычных условиях состоит из порошка и твердого термопластичного связующего. Смесь нагревают до температуры, при которой связующее становится вязким, заполняют форму вязким шликером и затем охлаждают до затвердевания массы. При электрофоретическом методе формование происходит путем постепенного наращивания слоя из частиц шликера, перемещающихся под воздействием электрического поля к электроду - форме и осаждающихся на ней.

Высокоскоростное (динамическое, импульсное, ударное) прессование осуществляют путем высокоскоростной деформации порошка. К нему относят взрывное, гидродинамическое, магнитно-импульсное прессование, некоторые виды ковки и штамповки, прессование на быстроходных прессах, копрах, молотах.

Спекание. Конечная операция порошковой металлургии -спекание - заключается в термообработке заготовок при температуре ниже температуры плавления хотя бы одного из компонентов. Его проводят с целью повышения плотности и обеспечения определенного комплекса механических и физико-химических свойств изделия. На начальной стадии спекания частицы проскальзывают друг относительно друга, между ними образуются контакты, происходит сближение центров частиц. На этой стадии скорость увеличения плотности (усадки) максимальна, но частицы еще сохраняют свою индивидуальность. На следующей стадии пористое тело м. б. представлено совокупностью двух взаимно проникающих фаз - фазы вещества и "фазы пустоты". На заключительной стадии пористое тело содержит изолированные поры и уплотнение происходит в результате уменьшения их числа и размеров. Спекание многокомпонентных систем осложняется взаимной диффузией. В этом случае спекание может происходить и с образованием жидкой фазы (жидкофазное спекание).

Спекание, как правило, проводят в защитной (чаще всего инертные газы) или восстановительной (водород, углеводородсодержащие газы) средах, а также в вакууме. Нагрев изделий осуществляют в электропечах (вакуумных, колпаковых, муфельных, толкательных, конвейерных, проходных, шахтных, с шагающим подом и др.), индукционных печах, прямым пропусканием тока. Спекание и прессование могут быть совмещены в одном процессе (спекание под давлением, горячее прессование).

Материалы и изделия. Получаемые методами порошковой металлургии материалы называют порошковыми. Эти материалы условно подразделяют на конструкционные, триботехнические, фильтрующие, твердые сплавы, высокотемпературные, электротехнические, с особыми ядерными свойствами и др.

Из конструкционных порошковых материалов изготовляют детали машин, механизмов и приборов, например шестерни, фланцы, зубчатые колеса, седла и корпуса клапанов, муфты, эксцентрики, кулачки, шайбы, крышки, корпуса подшипников, детали насосов, различные диски, втулки и др. Основные требования к этим порошковым материалам - повышенные механические свойства и экономичность. Детали из конструкционных порошковых материалов подразделяют на ненагруженные, мало-, средне- и сильнонагруженные, а по типу материала - на основе железа или сплавов цветных металлов.

К триботехническим относятся антифрикционные материалы и фрикционные материалы. Оптимальные структуры анти-фрикционных материалов - тведрая матрица и мягкий наполнитель. Для создания такой структуры наиболее эффективен именно метод порошковой металлургии Получаемые этим методом антифрикционные изделия обладают низким и стабильным- коэффициентом трения, хорошей прирабатываемостью, высокой износостойкостью, хорошей сопротивляемостью схватыванию. Изделия из порошковых антифрикционных материалов являются самосмазывающимися. Твердая смазка (напр., графит, селениды, сульфиды) заключена в порах самого изделия. Антифрикционные порошковые материалы могут использоваться как для изготовления объемных элементов, так и в качестве покрытий, нанесенных на подложки. Характерный пример изделий из порошковых антифрикционных материалов - подшипники скольжения.

Фрикционные порошковые материалы используют в узлах, передающих кинетическую энергию. Эти материалы обладают высокой износостойкостью, прочностью, теплопроводностью, хорошей прирабатываемостью. Порошковые фрикционные материалы чаще всего состоят из металлических и неметаллических компонентов. При этом металлические составляющие обеспечивают высокую теплопроводность и прирабатываемость, а неметаллические (SiO 2 , A1 2 O 3 , графит и др.) повышают коэффициент трения и уменьшают склонность к заеданию.

Фильтры из порошковых материалов по сравнению с др. пористыми изделиями обладают рядом преимуществ: высокой степенью очистки при удовлетворительной проницаемости, высокими жаростойкостью, прочностью, сопротивлением абразивному износу, теплопроводностью и др. Фильтры изготовляют спеканием свободно насыпанных или спрессованных порошков бронзы, нержавеющей стали, никеля, титана, железа. Методы порошковой металлургии позволяют изготовлять фильтры с изменяемой и регулируемой пористостью, проницаемостью и степенью очистки. Фильтры, наряду с пористыми подшипниками, составляют главную часть пористых изделий из порошковых материалов. Методами порошковой металлургии изготовляют также пористые уплотнительные прокладки, антиобледенители, пламегасители, конденсаторы, пеноматериалы и «потеющие» материалы.

Изделия из порошковых твердых сплавов, состоящих из твердых тугоплавких карбидов и пластичного металлического связующего, получают путем прессования смесей порошков и жидкофазного спекания. Твердые сплавы подразделяются на содержащие WC (или его твердые растворы с др. карбидами) и безвольфрамовые (на основе TiC и др. тугоплавких соед.); они обладают высокой твердостью, прочностью, износостойкостью. Из твердыхсплавов изготовляют инструменты для резания металлов и др. материалов, штамповки, обработки давлением, для бурения горных пород. Свойства многих инструментов из твердых сплавов существенно улучшаются при нанесении на поверхность изделий тонких (толщиной в несколько мкм) покрытий из тугоплавких соединений.

К высокотемпературным порошковым материалам относят сплавы на основе тугоплавких металлов (W, Mo, Nb, Та, Zr, Re, Ti и др.). Эти сплавы применяют в авиации, электротехнике, радиотехнике и др.

Электротехнические порошковые материалы включают следующие основные группы: контактные (для разрывных и скользящих контактов), магнитные, электропроводящие и др. Разрывные контакты предназначены для многократного (до нескольких млн.) замыкания и размыкания электрических цепей. Их изготовляют из порошковых сплавов на основе Ag, W, Mo, Cu, Ni с добавками графита, оксидов Cd, Cu, Zn и др. Скользящие контакты изготовляют из порошковых сплавов на основе Cu, Ag, Ni, Fe с добавками графита, нитрида В, а также сульфидов (для снижения коэффициента трения); их применяют в электродвигателях, генераторах электрического тока, потенциометрах, токосъемниках и др. устройствах. Металлические магнитотвердые и магнитомягкие материалы изготовляют из порошковыхсплавов на основе Fe, Co, Ni, Al, SmCo 5 , сплава Fe-Nd-B. Магнитодиэлектрики представляют собой многокомпонентные композиции на основе смеси ферромагнитных порошков с вяжущими веществами, являющимися изоляторами (жидкое стекло, бакелит, шеллак, полистирол, разные смолы). Диэлектрик образует на частицах ферромагнетика сплошную изолирующую пленку достаточной твердости, прочности и эластичности, одновременно обеспечивая их механическое связывание. Ферриты изготовляют только методами порошковой металлургии Порошковые электропроводящие материалы и изделия из них разного назначения изготовляют в основном из меди, алюминия и их сплавов.

В ядерной энергетике порошковые материалы (В, Hf, Cd, Zr, W, Pb, РЗЭ и др. и их соединений) с особыми свойствами используют в качестве поглотителей, замедлителей, из них изготовляют регулирующие стержни, а также твэлы (с использованием порошков диоксида, карбида, нитрида U и порошков тугоплавких соединений других трансурановых элементов)

Лит. Шведков Е Л, Денисенко Э. Т., Ковенский И. И., Словарь-справочник по порошковой металлургии, К.. 1982; Кипарисов С. С., Либенсон ГА., Порошковая металлургия, 2 изд., М., 1980; Порошковая металлургия в СССР История. Современное состояние. Перспективы, под ред. И. Н Францевича и В. И. Трефилова, М., 1986; Порошковая металлургия и напыленные покрытия, под ред. Б. С. Митина, М., 1987 Ю В. Ленинский

Oпубликовано на сайте www.s-metall.com.ua

Содержание статьи

ПОРОШКОВАЯ МЕТАЛЛУРГИЯ, технология получения металлических порошков и изготовления изделий из них, а также из композиций металлов с неметаллами. В обычной металлургии металлические изделия получают, обрабатывая металлы такими методами, как литье, ковка, штампование и прессование. В порошковой же металлургии изделия производят из порошков с размерами частиц от 0,1 мкм до 0,5 мм путем формования холодным прессованием и последующей высокотемпературной обработки (спекания). Порошковая металлургия экономична в отношении материалов и, как и традиционные методы металлообработки, позволяет получать детали с нужными механическими, электрическими и магнитными свойствами. Продукция порошковой металлургии используется в различных отраслях промышленности, в том числе в авиакосмической, электронной и на транспорте.

Методы порошковой металлургии начали разрабатываться в 20 в. для металлов, не допускающих обработки обычными методами. Так, например, вольфрам невозможно плавить и обрабатывать обычными методами литья, поскольку очень высока его температура плавления (3410° C). Поэтому, например, вольфрамовую нить для электрических ламп накаливания вытягивают из вольфрамовых штапиков, полученных прессованием и спеканием вольфрамового порошка. Порошки карбидов вольфрама, тантала и титана смешиваются с порошкообразными кобальтом и никелем, затем формуются холодным прессованием и спекаются. В результате получаются твердые металлокерамические материалы (цементированные карбиды), пригодные для обработки металлов резанием и для бурения горных пород. Самосмазывающиеся бронзовые подшипники могут быть изготовлены только методами порошковой металлургии. Поры бронзы заполняются смазочным маслом, которое поступает на рабочую поверхность подшипника под действием капиллярных сил, как по фитилю. Промышленными методами порошковой металлургии обрабатываются также железо, сталь, олово, медь, алюминий, никель, тантал, сплавы бронзы и латуни.

Технология.

Металлические порошки получают восстановлением металлов из их окислов или солей, электролитическим осаждением, распылением струи расплавленного металла, термической диссоциацией и механическим дроблением. Наиболее распространен способ восстановления металлов (железа, меди или вольфрама) из соответствующих окислов с последующим электрорафинированием. Механическим дроблением получают порошки (с частицами нужной крупности и формы) хрома, марганца, железа и бериллия.

Технологический процесс изготовления изделий из металлических порошков состоит из следующих операций: подготовка смеси для формования, формование заготовок или изделий и их спекание. Формование заготовок или изделий осуществляется путем холодного прессования под большим давлением (30–1000 МПа) в металлических формах. Спекание изделий из однородных металлических порошков производится при температуре, составляющей 70–90% температуры плавления металла. В смесях максимальная когезия достигается вблизи температуры плавления основного компонента, а в цементированных карбидах – вблизи температуры плавления связующего. С повышением температуры и увеличением продолжительности спекания увеличиваются усадка, плотность и улучшаются контакты между зернами. Во избежание окисления спекание проводят в восстановительной атмосфере (водород, оксид углерода), в атмосфере нейтральных газов (азот, аргон) или в вакууме.

Применение.

Круг изделий, изготавливаемых методами порошковой металлургии, весьма широк и непрерывно расширяется. К ним относятся зубчатые колеса, рычаги, кулачки и поршни для автомобилестроения, машиностроения, энергетики, промышленности средств связи, строительной, горнодобывающей и авиакосмической промышленности. Из ленты, полученной холодной прокаткой никелевого порошка, изготавливают монеты (например, канадский пятицентовик). Порошок железа используется в качестве носителя для тонера в ксероксах, а также в качестве одного из ингредиентов изделий из зерновых продуктов и хлеба повышенной питательности. Алюминиевый порошок служит компонентом ячеистого бетона, красок и пигментов, твердого ракетного топлива. См. также

ПРОИЗВОДСТВО МЕТАЛЛИЧЕСКИХ ПОРОШКОВ И ИХ СВОЙСТВА

Классификация методов получения порошков

Производство порошка – первая технологическая операция метода порошковой металлургии. Способы получения порошков весьма разнообразны, что позволяет широко варьировать их свойства. Это, в свою очередь, делает возможным придание изделиям из порошка требуемых физических, механических и других специальных свойств. Кроме того, метод изготовления порошка в значительной мере определяет его качество и себестоимость. Способы получения порошков делятся на механические и физико-химические. Механические методы обеспечивают превращение исходного материала в порошок без заметного изменения его химического состава. Чаще всего используют измельчение твердых материалов в мельницах различных конструкций и диспергирование расплавов. К физико-химическим методам относят технологические процессы производства порошков, связанные с физико-химическими превращениями исходного сырья. В результате получаемый порошок по химическому составу существенно отличается от исходного материала.

Механические методы получения порошков

Основным механическим методам получения порошков относятся: 1. Дробление и размол твердых материалов. Измельчение стружки, обрезков и компактных материалов проводят в шаровых, вихревых, молотковых и других мельницах, к.п.д. которых сравнительно невелик. Получают порошки Fe, Cu, Mn, латуни, бронзы, хрома, алюминия, сталей. 2. Диспергирование расплава. Струю расплавленного металла диспергируют механическим способом (воздействием центробежных сил и др.) или действуя на нее потоком энергоносителя (газа или жидкости). Получают порошки алюминия, свинца, цинка, бронзы, латуни, железа, чугуна, стали. 3. Грануляция расплава. Порошок образуется при сливании расплавленного металла в жидкость (например, в воду). Получают крупные порошки железа, меди, свинца, олова, цинка. Adidas Soldes 4. Обработка твердых (компактных) металлов резанием. При станочной обработке литых металлов или сплавов подбирают такой режим резания, который обеспечивает образование частиц, а не стружки. Получают порошки стали, латуни, бронзы, магния. Механическое измельчение компактных металлов широко распространено в порошковой металлургии. Измельчение может быть дроблением, размолом, истиранием. Наиболее целесообразно применять механическое измельчение при производстве порошков хрупких металлов и сплавов, таких как Si, Be, Cr, Mn, сплавы Al с Mg и др. Размол вязких пластичных металлов (Zn, Al, Cu) затруднен, так как они в основном расплющиваются, а не разрушаются. При измельчении комбинируют раздавливание и удар (при получении крупных частиц) и истирание и удар (при тонком измельчении). При дроблении затрачиваемая энергия расходуется на упругую и пластическую деформацию, на теплоту и на образование новых поверхностей. При дроблении под действием внешних сил в наиболее слабых местах тела образуются замкнутые или начинающиеся у поверхности трещины. Разрушение наблюдается тогда, когда трещины пересекают твердое тело по всему его сечению в одном или нескольких направлениях. В момент разрушения напряжения в деформирующемся теле превышают некоторое предельное значение (предел прочности материала). Работа, затрачиваемая на измельчение, представляет собой сумму . Слагаемое — это энергия, расходуемая на образование новых поверхностей раздела при разрушении твердого тела ( — удельная поверхностная энергия, — происходящее при измельчении приращение поверхности). Слагаемое — выражает энергию деформации (К — работа упругой и пластической деформации на единицу объема твердого тела, а — часть объема тела, подвергшаяся деформации). При крупном дроблении вновь образующаяся поверхность невелика. Поэтому << и расход энергии приблизительно пропорционален объему разрушаемого тела. При тонком измельчении вновь образующаяся поверхность очень велика и >> . Поэтому расход энергии на измельчение приблизительно пропорционален вновь образующейся поверхности. Среди методов измельчения твердых материалов наибольшее распространение получили обработка металлов резанием с образованием мелкой стружки или опилок, измельчение металла в шаровых, вихревых, молотковых и других мельницах, ультразвуковое диспергирование. В качестве примера рассмотрим размол в шаровых мельницах.

Простейший аппарат для измельчения дробленых твердых материалов — шаровая вращающийся мельница, которая представляет собой металлический цилиндрический барабан (Рисунок 2). Внутри барабана находятся размольные тела полиэдрической или округлой формы, чаще всего стальные или твердосплавные шары. При вращении мельницы размольные тела поднимаются на некоторую высоту в направлении вращения, затем падают или скатываются и измельчают материал, истирая его и раздрабливая. Соотношение между дробящим и истирающим действием размольных тел в мельнице зависит от отношения диаметра цилиндра D к длине цилиндра L при одинаковом объеме. При D:L>3 преобладает дробящее действие размольных тел (полезно для измельчения хрупких тел), при D:L<3 — истирающее действие (более эффективное для измельчения пластичных материалов). На интенсивность и механизм размола оказывают сильное влияние скорость вращения барабана мельницы, число и размер размольных тел, масса измельчаемого материала, продолжительность и среда размола. С увеличением скорости вращения барабана мельницы размольные тела падают с большей высоты, производя главным образом дробящее действие. При дальнейшем увеличении скорости вращения барабана размольные тела будут вращаться с барабаном и материал будет измельчаться незначительно. Эту скорость называют критической скоростью вращения.

Рассмотрим поведение единичного размольного тела, например шара (Рисунок 3). Одиночный шар весом Р на поверхности барабана мельницы, вращающегося со скоростью v (м/с), в точке т будет находиться под действием центробежной силы, равной Pv 2 /gR. где g – ускорение силы тяжести, R — внутренний радиус барабана мельницы. При угле подъема сила собственного веса шара может быть разложена на силы, одна из которых направлена по радиусу и равна Р sin , а другая – по касательной и равна Р cos . Не принимая во внимание трение, можно установить, что одиночный шар будет удерживаться на стенке барабана до тех пор, пока (Pv 2 /gR) = Р sin , или (v 2 /gR) = sin . Canada Goose Banff Если скорость вращения n такова, что в момент прохождения шара через зенит, при котором = 90 o , шар остается на стенке барабана, то sin 90° = v 2 /gR = 1, или v 2 = gR. При этом число оборотов барабана мельницы n кр (об/мин), a v = Dn кр. l60, поэтому 2 D 2 n кр. 2 /60 2 = g D/2 (1) где D - внутренний диаметр барабана мельницы. Отсюда находим, об/мин: n кр. = g/2 2 (60/ D)=42,4/ D (2) На процесс измельчения большое влияние оказывает масса шаров и ее отношение к массе измельчаемого материала. Обычно в мельницу загружают 1,7-1,9 кг стальных шаров на 1 л. объема. При этом коэффициент заполнения барабана мельницы является оптимальным, и составляет 0,4 — 0,5. При больших значениях шары сталкиваются друг с другом, теряя энергию, и не производят достаточно эффективного измельчающего действия, а при меньшей загрузке шаров резко снижается производительность измельчающего устройства. Количество (масса) загружаемого для размола материала должно быть таким, чтобы после начала измельчения его объем не превышал объема пустот (зазоров) между размольными телами. Если материала будет больше, то часть его, не вмещающаяся в зазоры, измельчается менее интенсивно. Обычно соотношение между массой размольных тел и массой измельчаемого материала составляет 2,5 — 3. При интенсивном измельчении это соотношение увеличивается до 6 — 12 и даже больше. Размер размольных тел (диаметр шаров) также оказывает влияние на процесс размола. Размер размольных тел должно быть в пределах 5 — 6% внутреннего диаметра барабана мельницы. Лучше применять набор размольных тел по размерам (например, при соотношении 4:2:1). Для интенсификации процесса размола его проводят в жидкой среде, что препятствует распылению материала. Кроме того, проникая в микротрещины частиц, жидкость создает большое капиллярное давление, способствуя измельчению. Жидкость также уменьшает трение как между размольными телами, так и между частицами обрабатываемого материала. Жидкой средой обычно служат спирт, ацетон, вода, некоторые углеводороды и пр. Длительность размола составляет от нескольких часов до нескольких суток. Для шаровых вращающихся мельниц соотношение средних размеров частиц порошка до и после измельчения, называемое степенью измельчения, составляет 50 – 100. Форма частиц, получаемая в результате размола в шаровых вращающихся мельницах, обычно осколочная, т.е. неправильная, с острыми гранями, а шероховатость их поверхности невелика.

Возможны несколько режимов измельчения. asics gel nimbus 18 soldes Наконец, может быть создан еще один вариант режима размола, получивший название режима скольжения. При использовании мельниц с гладкой внутренней поверхностью барабана и при небольшой относительной загрузке размольные тела не циркулируют внутри барабана мельницы. Вся их масса скользит по поверхности вращающегося барабана и их взаимное перемещение почти отсутствует. Этот режим называют режимом скольжения (сектор АВС, Рисунок 4, а). Измельчение материала при таком режиме размола малоэффективно, так как происходит путем истирания его лишь между внешней поверхностью размольных тел и стенкой барабана мельницы. При получении измельченных материалов с размером частиц порядка 1 мкм размол путем дробления падающими шарами становится малоэффективным. В таких случаях применяют режим перекатывания шаров (Рисунок 4, б), при котором они не падают, а поднимаются вместе со стенкой вращающегося барабана мельницы и затем скатываются по наклонной поверхности, образованной их массой. Измельчаемый материал истирается между шарами, циркулирующими в объеме, занимаемом их массой. При режиме перекатывания различимы четыре зоны движения шаров: зона их подъема по стенке барабана с некоторой не очень высокой скоростью, зона скатывания с наибольшей скоростью, зона встречи скатившихся шаров со стенкой барабана и центральная застойная зона, в которой шары почти неподвижны. Увеличивая скорость вращения барабана мельницы, можно повысить эффективность режима перекатывания путем сужения или полной ликвидации застойной зоны в шаровой загрузке. Наличие перекатывания или скольжения размольных тел при вращении барабана мельницы зависит (при прочих равных условиях) от относительной загрузки . При загрузке большого числа шаров (или размольных тел другой формы, но обязательно полиэдрической) происходит перекатывание, а при малой загрузке - скольжение. Изменяя величину загрузки мельницы размольными телами, можно получать в одних случаях режим перекатывания, а в других - режим скольжения, причем в зависимости от устанавливающегося режима эффективность размола будет различной. jordan 5 femme Кроме вращающихся мельниц используют также вибрационные, планетарные, центробежные и гироскопические мельницы (вращаются относительно горизонтальных и вертикальных осей), мельницы с магнитно-индукционным вращателем (для ферромагнитных материалов), вихревые мельницы (измельчение за счет создания вихревых потоков, создаваемых двумя пропеллерами, расположенных друг против друга), молотковые мельницы (используется молот для дробления губчатых материалов). Другим распространенным методом получения порошков является диспергирование расплавов. Диспергирование расплавленного металла или сплава струей сжатого газа, жидкости или механическим способом позволяет получать порошки, называемые распыленными. asics basket Процесс характеризуется высокими производительностью, технологичностью, степенью автоматизации и сравнительно малыми энергозатратами, экологически чистый. Промышленное производство порошков в нашей стране составляет в соотношении 4-5: 1 в пользу распыленных порошков. timberland soldes В настоящее время метод распыления широко используют для получения не только порошков железа, сталей и других сплавов на основе железа, но и порошков алюминия, меди, свинца, цинка, тугоплавких металлов (титана, вольфрама и др.), а также сплавов на основе этих цветных металлов. Распыление весьма эффективно при получении порошков многокомпонентных сплавов и обеспечивает объемную равномерность химического состава, оптимальное строение и тонкую структуру каждой образующейся частицы. Это связано с перегревом расплава перед диспергированием, что приводит к высокой степени его однородности на атомарном уровне из-за полного разрушения наследственной структуры твердого состояния и интенсивного перемешивания, и кристаллизацией дисперсных частиц с высокими скоростями охлаждения – от 10 3 – 10 4 до нескольких десятков и даже сотен миллионов градусов в секунду. Методы распыления металлического расплава различаются по виду затрачиваемой энергии (нагрев индукционный или косвенный, электродуговой, электронный, лазерный, плазменный и др.), виду силового воздействия на расплав при диспергировании (механическое воздействие, энергия газовых и водяных потоков, силы гравитационные, центробежные, воздействия ультразвука и т.д.) и по типу среды для его создания и диспергирования (восстановительная, окислительная, инертная или какая-либо иная среда заданного состава, вакуум). Сущность получения металлических порошков из расплава заключается в нарушении сплошности его потока (струи или пленки) под действием различных источников возмущений с возникновением дисперсных частиц.

Центробежное распыление представляет собой один из основных видов диспергирования расплава. nike air max 90 bleu По методу вращающегося электрода распыление происходит в момент формирования расплава (Рисунок 5 – электрическая дуга, или электронный луч, плазма или другие источники энергии). Образовавшаяся на торце расходуемого электрода, вращающегося со скоростью 2000–20000 об/мин, пленка расплава толщиной 10–30 мкм под действием центробежных сил перемещается к его периферии и срывается с его кромки в виде частиц-капель преимущественно размером 100–200 мкм (увеличение диаметра расходуемого электрода и скорости его вращения приводит к уменьшению размера частиц-капель) Кристаллизация капель со скоростью охлаждения порядка 10 4 °С/сек происходит в атмосфере инертного газа.

При других схемах диспергирования (Рисунок 6) плавление металла проводят автономно, вне зоны распыления. Когда струю расплава подают на вращающийся со скоростью до 24000 об/мин диск, на его вогнутой поверхности образуется пленка жидкого металла, от которой затем отрываются капли-частицы преимущественно размером <100 мкм и кристаллизуются в атмосфере инертного газа со скоростью 10 5 – 10 6 °С/сек. В последнее время активно развиваются методы распыления расплавов, обеспечивающие очень высокие скорости охлаждения частиц. Один из вариантов, обеспечивающий затвердевание жидкой капли со скоростью 10 7 – 10 8 °С/с, позволяет получать так называемые РИБЗ – (распыленные и быстрозакаленные порошки), когда на пути летящей капли устанавливают охлаждаемый экран под углом 15–45° к направлению ее движения; при ударе об экран капля перемещается по его поверхности и последовательно кристаллизуется в виде частицы пластинчатой формы.

На установке для сверхбыстрого охлаждения в вакууме или инертном газе (Рисунок 7, а) капли расплава 1 выдуваются аргоном из отверстия в графитовом тигле 2, находящемся в трубчатой индукционной печи 3, и попадают на медный крылообразный кристаллизатор 4, вращающийся со скоростью до 10 4 об/мин (встречная скорость движения капли и кристаллизатора до 500 м/с). Высокоскоростное затвердевание расплава обеспечивает извлечение малых объемов металла кромкой быстровращающегося (2000–5000 об/мин) в вертикальной плоскости диска из высокотеплопроводного материала (Рисунок 6, б). При контакте с расплавом на кромке диска затвердевает некоторый слой металла, затем он выходит из расплава и охлаждается, после чего частица отделяется от кромки диска (скорость охлаждения 10 6 –10 8 °С/с). В любом случае методы распыления при кристаллизации капли расплава со скоростью более 10 6 °С/с приводят к получению порошков, частицы которых имеют аморфную структуру, придающую им чрезвычайно специфические свойства, позволяющие создавать уникальные материалы для различных отраслей техники.

Физико-химические способы получения порошков

Дадим краткую характеристику некоторым физико-химическим методам получения порошков. 1. Химическое восстановление: а — восстановление происходит из оксидов и других твердых соединений металлов. Этот способ является одним из наиболее распространенных и экономичных способов. В общем случае простейшую реакцию восстановления можно представить как: МеА + Х <—> Ме + ХА ± Q (3) где Ме – любой металл, порошок которого хотят получать; А – неметаллическая составляющая восстанавливаемого соединения МеА (кислород, хлор, фтор, солевой остаток и др.); Х – восстановитель; Q – тепловой эффект реакции. Восстановителями служат газы (водород, конвертированный природный газ и др.), твердый углерод (кокс, сажа и др.) и металлы (натрий, кальций и др.). Исходным сырьем являются окисленные руды, рудные концентраты, отходы и побочные продукты металлургического производства (например, прокатная окалина), а также различные химические соединения металлов. Таким путем получают порошки Fe, Cu, Ni, Co, W, Mo, Ti, Ta, Zr, U и других металлов и их сплавов, а также соединений с неметаллами (карбиды, бориды и др.) б — химическое восстановление различных соединений металлов из водных растворов. Этот способ также является одним из самых экономичных способов, позволяющий получать высококачественные металлические порошки. Восстановитель – водород или оксид углерода. Исходное сырье – сернокислые или аммиачные растворы солей соответствующих металлов. В качестве примера применения этого метода рассмотрим получение порошка меди. Медь может быть выделена восстановлением водородом как из кислых, так и щелочных растворов. Обычно используют раствор сульфата меди или медноаммиачной комплексной соли; реакции восстановления имеют вид: CuSO 4 + Н 2 = Cu + H 2 SO 4 (4) SO 4 + Н 2 + 2Н 2 O = Cu +(NH 4) 2 SO 4 + 2NH 4 OH (5) Восстановление проводят при суммарном давлении газа 2,4–3,5 или 3,5–4,5 МПа и температуре 140–170 или 180–200 о С, соответственно. Извлечение меди в осадок составляет около 99%. Скорость процесса восстановления возрастает с увеличением количество суспендированной меди. Химическая чистота порошков, полученных таким способом, высокая (99,7–99,9%Cu, <0,1%O 2 , <0,01%Fe), а себестоимость меньше себестоимости электролитических порошков меди. Форма частиц может быть самой разнообразной: дендритной, округлой и др. Таким путем получают порошки Cu, Ni, Co, Ag, Au. nike air max 90 в — химическое восстановление газообразных соединений металлов. Порошки металлов высокой чистоты можно получить из низкокипящих хлоридов и фторидов вольфрама, молибдена, рения, ниобия или тантала по реакции: МеГ х + 0,5хН 2 = Ме + хНГ (6) где Г – хлор или фтор. Для получения высокодисперсных порошков металлов или их соединений (карбидов, нитридов и др.) перспективны плазмохимические методы. Восстановителем служит водород или углеводороды и конвертированный природный газ. Низкотемпературную (4000–10000°С) плазму создают в плазмотроне электрической дугой высокой интенсивности, через которую пропускают какой-либо газ или смесь газов. В плазменной восстановительной струе происходит превращение исходных материалов в конденсированную дисперсную фазу. Метод используется для получения порошков тугоплавких металлов W, Mo, Ni. 2. Электролиз водных растворов или расплавленных солей различных металлов. На катоде под действием электрического тока осаждают из водных растворов или расплавов солей чистые порошки практически любых металлов. Стоимость порошков высока из-за больших затрат электроэнергии и сравнительно низкой производительности электролизеров. Таким путем получают из водных растворов – порошки Cu, Ni, Fe, Ag, а из расплавленных сред – порошки Ta, Ti, Zr, Fe. 3. Диссоциация карбонилов. Карбонилами называют соединения элементов с СО общей формулы Ме а (СО) с. Карбонилы являются легколетучими, образуются при сравнительно небольших температурах и при нагревании легко разлагаются. В промышленных масштабах диссоциацией карбонилов производят порошки Ni, Fe, Со, Сr, Мо, W и некоторых металлов платиновой группы. Схематически карбонил — процесс идет по схеме: Me a б b + сСО —> bБ + Ме a (СО) c (7) Ме a (СО) c —> аМе + сСО (8) В первой фазе по реакции (7) исходное сырье Ме а Б b , содержащее металл Me в соединении с балластным веществом Б, взаимодействует с СО, образуя промежуточный продукт (карбонил). Во второй фазе карбонил металла при нагреве разлагается по реакции (8) на металл и СО. Реакция (7) образования карбонила идет везде, где СО соприкасается с поверхностью металла в исходном сырье: снаружи твердого тела, в его трещинах и порах. В некоторых случаях возможно образование нескольких карбонилов. Термическая диссоциация карбонила на металл и СО в большинстве случаев наступает при невысокой температуре. В первый момент появляются атомы металла и газообразные молекулы СО. Частицы порошка формируются в результате кристаллизации парообразного металла в два этапа: сначала образуются зародыши, а затем из них вырастают собственно порошинки различной формы, что является результатом адсорбции паров металла на поверхности каждого из зародышей. Расширение производства карбонильных порошков существенно сдерживается их высокой стоимостью, так как они в десятки раз дороже восстановленных порошков аналогичных металлов. 4. Термодиффузионное насыщение. Чередующиеся слои или смесь порошков разнородных металлов нагревают до температуры, обеспечивающей их активное взаимодействие. Получают порошки латуни, сплавов на основе хрома, высоколегированных сталей. 5. Испарение и конденсация. Для получения порошка металл испаряют и затем конденсируют его пары на холодной поверхности. Порошок является тонкодисперсным, но содержит большое количество оксидов. Получают порошки Zn, Cd и других металлов с невысокой температурой испарения. 6. air max griffey Межкристаллитная коррозия. В компактном (литом) металле или сплаве при помощи химического травителя разрушают межкристаллитные прослойки.